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A model of p-branes with closed-constraint algebra 

M N Stoilov and D Tz Stoyanov 
Institute for Nuclear Research and  Nuclear Energy, Bulgarian Academy of Science, Sofia 
1184, Bulgaria 

Received 4 August 1989, in final form 13 Ju ly  1990 

Abstract. A new model of p-branes is introduced and  studied The general solution of this 
model is equivalent to a particle solution of the cobariant p-brane problem which we have 
obtained earlier. The constraint algebra obtained here is closed in the sense that its structure 
functions are  field independent.  

The geometrical formulation of the mechanical motion of p-dimensional extended 
objects (so called p-bran;s) is based on the minimization of the world volumes which 
are swept from pieces of moving p-dimensional surfaces. This formulation is very 
simple but great difficulties arise when one tries to solve this problem even at the 
classical level. No general solutions were obtained except for the case p = 1 (i.e. string). 
This is because in the higher p-branes there are essential nonlinearities. A related 
problem is that the Poisson brackets of the constraints are not linear functions of them, 
i.e. the structure ‘constants’ of the constraint algebra are field dependent. 

In our opinion to overcome these difficulties we must define some particular model 
which must first preserve some of the properties of the covariant problem and, second, 
have a general solution which can be written down in a closed form. Moreover, this 
general solution must coincide with some particular solution of the covariant problem. 
Very convenient solutions for such a purpose are those obtained in a work of Stoyanov 
( 1989) which were called characteristics. These characteristics are the generalization 
of the chiral bosonic string solutions depending on one of the cone variables only. 

Let us recall how the above-mentioned solutions were obtained. First of all one 
introduces an  appropriate gauge condition which fixes the determinant value of the 
space-like part of the induced world volume metric. Then the corresponding action 
can be written down in the following way: 

A =  T d ’ c ~ [ ~ ‘ ~ ~ + A ( ~ ~ 1 - 1 ) ]  (1 )  i 
where h,, = d,x+apx, is the induced metric on the world volume; X~ (a) are embeddings 
of the s-dimensional world volume into d-dimensional Minkowski space ( d  > s); the 
initial Greek indices a, p, y ,  . . . take the values from 0 to s - 1 whereas the indices 
p, v, w , .  . . are from 0 to d - 1 (in the background Minkowski space); the indices 
i, j ,  k, . . . run from 1 to s - 1; A is a Lagrange multiplier and T is a constant with 
dimension of (mass) ‘. 

As was proved by Stoyanov (19891, the minimization problem of the action (1) has 
an  exact solution, and it was obtained there when the additional condition 
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took place and  A was an  arbitrary function depending on U" only. In the equality (2) 
hi' is the inverse matrix of the space-like part of the induced metric i.e. 

h'JaJxwakx, = S i  ( i , j , k = l , 2  , . . . ,  s - 1 )  (3)  

and x, = sox, . In this case the new action 

A ' =  T 1 W d ' o  (4) 

where IIt = St -a,xuh'JaJxp is a projection matrix, is equivalent to the initial action A 
from (1). This means that from the two actions A, with condition (2),  and A' follow 
the same equations of motion 

p, - J ' a , p ,  = 0 

a ,  J '  = 0 

and the same constraints 

Here we have denoted 

Of course this statement is valid when the gauge condition 

dp$iJ=l 

is fulfilled. 

(1989) and  they have the following form: 
A large set of solutions of the equations ( 5 )  and (6) was obtained by Stoyanov 

P, = P , ( Z ' )  

X ,  = G ( a o ) p , ( z ' ) + t , ( z i )  

where 

zi =f;(a"+f ' ( (TO,  ( T J ) .  (13) 

Here p , ( z ' )  and t , ( z ' )  are arbitrary functions of the s - 1 variables z ' ;  f;(d') and 
f ' ( a o ,  a')  = f ' (ao ,  U ' ,  . . . , U ' - ' )  are arbitrary functions, but satisfy the following con- 
dition: 

Idet(a,f')i = 1. (14) 

The functions fb( (T") and f ' ( v o ,  (T') are connected with the remaining gauge freedom. 
From the equivalence between the two formulations it is easy to see that the solutions 

(11) and (12) when 

G((T") = constant 
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(i.e. A = 0) are the particular ones of the covariant problem. Indeed (12) takes the new 
form: 

x ,  = x , ( z ' )  ( 1 5 )  

where x , ( z ' )  are a new set of arbitrary functions. Then ( 1 1 )  and ( 1 5 )  form the 
above-mentioned particular solution of the covariant problem. In  the mathematical 
literature such solutions are known as characteristics (see e.g. Smirnov (1972)). For 
example if s = 1 ,  from equations ( 1 5 ) ,  ( 1 3 )  and (14), we have one of the two chiral 
solutions 

x ,  = x , ( u O + a ' )  or x , = x , ( u O - a ' )  

which are the characteristics for the two-dimensional d'Alembert equation. Moreover 
the gauge condition (10) is not of vital importance in this case and that is why we 
shall not consider it. The conditions (7) and (8) without the condition (10) already 
form a closed infinite Lie algebra. 

In the present work we shall try to introduce, from previous considerations, a n  
independent mechanical system which must be equivalent to the system with action 
from (4) at the level of the classical solutions ( 1  1 )  and (12) and constraints (7) and  
(8). This means that we must construct such a mechanical system with the same 
constraints for which the expressions ( 1 1 )  and (12) must form the general solution. 

To  construct our model we start from the Lagrangian formulation. Let us consider 
the following action: 

S = [ pwX, - A'( p 2  - T') - A 'pp'a,x,]  dig .  (16) 

Here the quantities p,+, x, ,  A'and A '  are independent fields defined on an  s-dimensional 
manifold with coordinates U". Note that the only difference between (16) and the 
usual p-brane action is that in the latter case the T' term in (16) is replaced by 
det I d ,  x a, x ,  1 .  

5 

The action (16) has the same reparametrization invariance as ( l ) ,  namely 

a" + 5" = t o (  2) 

with det 7 = 1 lay' I 

From the action (16) we have the following system of equations of motion: 

(17) 

p ' ld ,x ,  = 0 (18) 

p , - a , A ' p p - A ' a j p ,  = O  (19) 

(20) 

p 2 =  Tl 

1, - A'd,x,+ - h o p ,  = O .  
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The corresponding canonical momenta then have the form: 

The last four equations are constraints. The first one means that the field p p  must 
be identified with the canonical momentum of the field x p  and the rest are trivial. 

The first two equations of motion in our model coincide with the constraints (7) 
and (8). To prove that the system of (17) to (20) is equivalent to the system of ( 5 )  and 
(6) it is necessary to solve (19) and (20) for A' and A ' .  One obtains the following 
expressions: 

A '  = iphva ,xp  and a , A ' = O .  (26) 
Finally one obtains the expression (9) for the momentum. 

From (25) and (26) we can see that the additional condition (2) proposed for 
consideration by Stoyanov ( 1989) appears here automatically from the equations of 
motion. Moreover the fields A '  coincide with the quantities denoted as J '  from the 
same paper. 

Now we can write down the corresponding Hamilton function; in our case it has 
the following form: 

H = [ ~ , ( p ' -  ~ ' ) ) + ~ I p ~ a , x , ]  d '- 'a .  (27)  1 
Considering the equations (17) and (18) as constraints we can construct their Poisson 
bracket with H. Introducing the following notation: 

$ = p p ' -  T 2  and P, = p p a , x p  (28) 

{H, $}=2($+ T2)a ,A '+A'a($  (29) 

{H, ~ p , }  = ( a k A  '8; +a,AJ)cp,  + A J a , q ,  + A ' a ,  $ + 2a,,i0(9 + T * )  

we have 

and 

(30) 

We see that the following condition appears on the right-hand side of (30) as a 
where { ., . }  denotes the Poisson bracket. 

secondary constraint: 

a , A " = o  (31) 
i.e. the expression ( 2 5 )  depends on CT" only. But this condition does not lead to an 
additional restriction because the solution ( 15) satisfies (31) identically. 
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We see that (17) and (18) are first class constraints according to the Dirac 
classification (Dirac 1964). As we have noted above, the corresponding algebra is 
closed. To construct the latter we introduce the generating functional of our constraints 
which has a similar form to the Hamilton function: 

U ( p o ,  p i )  = I ( p o I ) + p i p i )  d"- 'a  

where po and p i  are arbitrary test functions. The quantity U ( p o ,  p i )  coincides with 
H when po and p i  satisfy conditions (26) and (31). 

Remark. For our solutions (15) the integrals (32) do not depend on a'. With simple 
calculations one can obtain the following Poisson bracket 

W ( p 0 ,  p i ) ,  W O ,  v i ) }  

+ ( v J a , p u '  --pJa,V')pJ ds - ' a+  ( d p J  - v J p')aJqo, ds-'u. (33 )  I I 
Hitherto we have not mentioned the boundary conditions. Certainly all the integrals 

above must be taken in appropriate limits corresponding to the chosen boundary 
conditions. As a rule one applies the latter ones to specify the solutions of the equations 
of motion, then one expresses all mechanical quantities, including constraints, through 
specified solutions. In our case we shall act in another way; namely, different kinds 
of boundary conditions will be taken into account with the choice of an appropriate 
set of test functions for the functional (32). 

The most simple example is one with periodic boundary conditions (in particular 
a torus compactified extended object). In this case the test functions will be a series 
of periodic exponents 

po( n, a) = eina 

pJ(n, a) = ~ j "  einu 
(34) 

where n denotes the (s - 1)-dimensional vector with components n , ,  n 2 , .  . . , ns- ,  which 
are integer numbers; U denotes the (s - 1)-dimensional vector with components 
a , ,  a 2 , .  . . , a.9-, and 

nu = n , a, + n 2 a 2  + . . . + n, - , a, - , , 
Using the series of functions (34) we can obtain the infinite-dimensional Lie algebra 
corresponding to the functional (32). Let us define the following notation: 

U ( 0 ,  pi,") = = ei""pl(a) d"- 'a I 
I U(pu", , 0) I)" = ei""+(a) d'-'a. 
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Then from equations (33-36) it is easy to obtain the following Poisson brackets for 
the quantities cp: and 4": 

{V, $"I = 0 (37 )  

{+", c p ~ } = i ( n , - m I ) ~ " + m - 8 ~ 2 i ~ 2 m , ~ , + , , o  (39) 

{ cp:, cpy} = i n,cp:fm - i . m,cp/"+'" (38) 

where 

an+, = 8nI+m,,OSn2+m?,o ' . . 8 n L - , + m > - , . o .  

The obtained algebra contains some well known algebras (Floratus er a1 1988, Hoppe 
1988, Bars er a1 1988) as subalgebras. First of all when i = j ,  from (38), we have 

icp:, cp? = i(n, - m,)cpo:'". (40) 

This is a trivial generalization of the Witt algebra in (s - 1)-dimensional space. A more 
interesting subalgebra arises after we introduce the notation: 

J i  = flkAijp; (41) 

(42) 

where the matrices 
AU k l -  - 8;8{-8;8; 

are the generators of the group O(s - 1). Then from (38) and (41) we can obtain (see 
also Hoppe (1988)) 

{ J t ,  Jk} = (nA"m)Ji , ,  . (43) 

Here 

(nA"m) = nkA&mj. 
k l  

In particular in the case of a membrane (i.e. s = 2) there is only one matrix (42) which 
coincides with 

F = (  -1 0 '). 
Then the subalgebra (43) coincides with the algebra studied by Floratos er a1 (1988), 
Hoppe (1988), Bars er al (1988). 

Finally we can obtain the most general form of the central charge: 

C(Ji ,  JL) = a ' ( n + m ) n , S , , + m , , o + ~ J ( n + m ) n J ~ n , + m , . o + ( b " .  n ) a n + m , O  (44) 

where a ' ( n  + m )  are arbitrary functions and b y  is an arbitrary, constant vector. Note 
that in the first two terms of central charge (44) there is no summation over the indices 
i and j .  The first and second term on the R H S  of (44) can be removed by a suitable 
redefinition of the generators but we keep them since they might be of physical interest, 
as we can see from Virassoro algebra case. 
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